试想,在一天早晨八点,你从山脚开始上山,恰好在中午十二点到达山顶,你在山上住了一夜。第二天早晨八点,你从山顶原路返回,开始下山,恰好又在中午十二点到达山脚。
那么现在我敢断言:无论你在上山和下山时的速度如何,在从山脚到山顶的路上,一定存在某个地方,你在两天的同一个时间经过了那里。
请问我说的对吗?为什么?
有一条虫子,它的整个身体由 n 节构成,每一节要么是有瑕疵的 1 ,要么是没有瑕疵的 0 ,因而整个虫子的身体结构就可以用一个 n 位 01 串来表示。你的目标是把整个虫子变成 000...00 的完美形式。每一次,你可以砍掉虫子最右侧的一节,同时虫子会在最左侧长出新的一节,以保持虫子的总长度不变。如果你砍掉的是一个 1 ,那么你可以指定虫子在最左侧长出的是 1 还是 0 ;但如果你砍掉的是一个 0 ,那么你无法控制虫子会在最左侧长出什么——它可能会长出 0 ,也可能会长出 1 ,因而你不得不假定,概率总是会和你做对,上天会竭尽全力地阻挠你。我们的问题是:不管虫子的初始状态是什么,你总能保证在有限步之内让虫子变成 000...00 吗?
一位老师和他的三位学生A、B和C玩猜数字游戏。老师想了一个三位数(XYZ),他告诉所有人X、Y、Z这三个数都不为0,然后把个位数Z告诉了A,十位数Y告诉了B,百位数X告诉了C,再让他们轮流问老师问题来找到线索得到这个三位数的值。老师知道A、B、C三个人都很聪明,所以规定他们问的问题只能是是非题,而且每个人问的题目和老师给出的答案三个人都能听得到。
第一轮开始。
A:这个三位数是质数吗? 老师:不是。
B:如果用我拿到的数和A拿到的数组成一个两位数(YZ),这个数是完全平方数吗? 老师:不是。
C:如果用我拿到的数和B拿到的数组成一个两位数(XY),这个数是完全平方数吗? 老师:不是。
第一轮结束后,A说他已经知道这个三位数是多少了,不用再问问题了。
第二轮开始。
B:X、Y、Z这三个数之和是质数吗?老师:不是。
这时B和C表示不用问了,他们都知道这个三位数是多少了。
问:这个三位数(XYZ)是多少?
已知某个居民区内有6720名居民,每天他们中的每一个人都会把昨天听到的消息转告给ta认识的所有人。无论消息告诉任何一个人,消息都可以逐渐地被所有居民所知道。如果一定可以指定特定的n个居民,并通过他们来传播消息使在至多20天内让所有居民知道同一消息,问n的最小值为多少?
(已知认识的关系是互相的)
(你告知消息的当天设定为第零天,不记入在20天内,即第一天到第20天都可以传播消息)
一个正四边形ABCD,每个顶点上有一只蚂蚁(可看作动点),4只蚂蚁同时开始移动,A处的蚂蚁的运动方向始终向着B处的蚂蚁(是蚂蚁不是B点),B处的蚂蚁的运动方向始终向着C处的蚂蚁,C、D处的蚂蚁同理,每只蚂蚁的速度大小相同,则A蚂蚁与C蚂蚁的初始速度方向保持平行,整个过程瞬时速度方向始终保持平行,B蚂蚁与D蚂蚁同理,那么他们到底能相遇还是不能相遇?