残灯无焰 2023-02-23 21:59:30
芝诺 (约前490-前425),英文Zeno of Elea,出生地为意大利半岛南部的埃利亚。古希腊数学家、哲学家,以芝诺悖论著称。
“两分法”的悖论
“两分法”的悖论是芝诺否认事物运动的第一个悖论。他说,运动着的事物在达到目的地之前,先要完成全程的1/2;在达到1/2处之前,又要完成它的1/2。如此分割,乃至无穷,永远也达不到目的地。芝诺这个悖论暗示运动的路程是无限可分的。
后来,亚里士多德批评芝诺在“两分法”中所犯的错误:他(芝诺)主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触。须知长度和时间被说成是“无限的”有两种涵义,并且一般地说,一切连续事物被说成是“无限的”都有两种涵义:或分起来的无限,或延伸上的无限。
因此,一方面,事物在有限的时间里不能和数量上无限的事物相接触,另一方面,却能和分起来无限的事物相接触,因为时间本身分起来也是无限的。因此,通过一个无限的事物是在无限的时间里而不是在有限的时间里进行的,和无限的事物接触是在无限数的而不是在有限数的现在上进行的。
“阿基里斯和乌龟赛跑”的悖论
“阿基里斯和乌龟赛跑”的悖论是芝诺否认事物运动的第二个悖论。阿基里斯是古希腊奥运会上的长跑冠军。但芝诺却得出了他永远追不上乌龟的结论。
他说,设想阿基里斯和乌龟赛跑的时候,乌龟先爬一段路程;当阿基里斯跑完这段路程的时候,乌龟又向前爬了一段路程;当阿基里斯跑完这一段时,乌龟又再向前爬一段;一追一爬,以至无穷,阿基里斯永远也赶不上乌龟。这个悖论说明:运动中的事物没有快慢之分。
亚里士多德指出,芝诺的这个悖论和“两分法”的悖论在思路上是一致的,其实是一回事。区别仅在于:“这里加上的距离不是用二分法划分的。由这个论证得到的结论是:跑得慢的人不可能被赶上。
而这个结论是根据和二分法同样的原理得到的——因为在这两个论证里得到的结论都是因为无论以二分法还是以非二分法取量时都达不到终结。在第二个论证里说最快的人也追不上最慢的人,这样说只是把问题说得更明白些罢了——因此,对这个论证的解决方法也必然是同一个方法。
认为在运动中领先的东西不能被追上这个想法是错误的。因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么它也是可以被赶上的。
“飞矢不动”的悖论
“飞矢不动”的悖论是芝诺否认事物运动的第三个悖论。他指出,被射出去的飞箭在一段时间里通过一段路程,这一段时间可被分成无数时刻。在每一个时刻,飞箭都占据一个位置,因此是静止不动的。就是说,它停驻在这段路程的各个不同的位置上,而不是从一个位置飞至另外一个位置。
芝诺通过这个悖论旨在说明路程和时间的无限可分性所造成的速度是静止的。亚里士多德反驳说:“他的这个说法是错误的,因为时间不是由不可分的‘现在’组成的,正如别的任何量都不是由不可分的部分组合成的那样。”又说:“这个结论是因为把时间当作是由‘现在’组成的而引起的。如果不肯定这个前提,这个结论是不会出现的。”
“运动场”悖论
“运动场”悖论是芝诺否认事物运动的第四个悖论。芝诺说:假设跑道上有两排物体,大小相同且数目相同,一排从终点排到中间点,另一排从中间点排到起点。它们以相同的速度沿相反方向作运动。如下所示:
A A A A A A A A
B B B B—→ B B B B—→
←— C C C C ←—C C C C
AAAA为一排静止物体,而BBBB和CCCC分别代表以相同速度作相反方向运动的物体。于是当第一个B到达最末一个C的同时,第一个C也达到了最末一个B。这时第一个C已经经过了所有的B,而第一个B只经过了所有的A中的一半。因为经过每个物体的时间是相等的,所以一半时间和整个时间相等。
由此,芝诺得出结论:一倍的时间等于一半的时间。
对于这个观点,后来的亚里士多德批评说:“这里错误在于他把一个运动物体经过另一运动物体所花的时间,看做等同于以相同速度经过相同大小的静止物体所花的时间。事实上这两者是不相等的。”